Adaptive Sensor Modelling and Classification using a Continuous Restricted Boltzmann Machine (CRBM)

نویسندگان

  • Tong Boon Tang
  • Alan F. Murray
چکیده

This paper presents a neural approach to sensor modelling and classification as the basis of local data fusion in a wireless sensor network. Data distributions are non-Gaussian. Data clusters are sufficiently complex that the classification problem is markedly non-linear. We prove that a Continuous Restricted Boltzmann Machine can model complex data distributions and can autocalibrate against real sensor drift. To highlight the adaptation, two trained but subsequently non-adaptive neural classifiers (SLP and MLP) were employed as benchmarks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of continuous restricted Boltzmann machine to detect multivariate anomalies from stream sediment geochemical data, Korit, East of Iran

Anomaly separation using stream sediment geochemical data has an essential role in regional exploration. Many different techniques have been proposed to distinguish anomalous from study area. In this research, a continuous restricted Boltzmann machine (CRBM), which is a generative stochastic artificial neural network, was used to recognize the mineral potential area in Korit 1:100000 sheet, loc...

متن کامل

Minimising Contrastive Divergence in Noisy, Mixed-mode VLSI Neurons

This paper presents VLSI circuits with continuous-valued probabilistic behaviour realized by injecting noise into each computing unit(neuron). Interconnecting the noisy neurons forms a Continuous Restricted Boltzmann Machine (CRBM), which has shown promising performance in modelling and classifying noisy biomedical data. The Minimising-Contrastive-Divergence learning algorithm for CRBM is also ...

متن کامل

Adaptive, integrated sensor processing to compensate for drift and uncertainty: a stochastic 'neural' approach.

An adaptive stochastic classifier based on a simple, novel neural architecture--the Continuous Restricted Boltzmann Machine (CRBM) is demonstrated. Together with sensors and signal conditioning circuits, the classifier is capable of measuring and classifying (with high accuracy) the H+ ion concentration, in the presence of both random noise and sensor drift. Training on-line, the stochastic cla...

متن کامل

Complex-Valued Restricted Boltzmann Machine for Direct Speech Parameterization from Complex Spectra

This paper describes a novel energy-based probabilistic distribution that represents complex-valued data and explains how to apply it to direct feature extraction from complex-valued spectra. The proposed model, the complex-valued restricted Boltzmann machine (CRBM), is designed to deal with complex-valued visible units as an extension of the wellknown restricted Boltzmann machine (RBM). Like t...

متن کامل

Echo-State Conditional Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) are a powerful generative modeling technique, based on a complex graphical model of hidden (latent) variables. Conditional RBMs (CRBMs) are an extension of RBMs tailored to modeling temporal data. A drawback of CRBMs is their consideration of linear temporal dependencies, which limits their capability to capture complex temporal structure. They also require ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2006